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Abstract:  Drawing on a unique, multi-year collaboration with the heads of major IT, wireless, 
hardware, health, and financial firms, as well as the heads of American, EU, and other 
regulatory organizations, and a variety of NGOs [1,2], I describe the potential for pervasive and 
mobile sensing and computing over the next decade, and the challenges that will have to be 
faced in order to realize this potential.  
 
Building Effective Systems for Society 

 
How can we design the systems and networks needed for a healthy, sustainable society? This 
problem is not new: in the 1800’s, the industrial revolution spurred the growth of cities and 
created huge health problems. The solution then was to engineer centralized networks that 
delivered clean water and safe food, removed waste, provided energy, facilitated transportation, 
and provided access to centralized healthcare, police, and educational services.    
 
These century-old solutions are now increasingly obsolete and unsustainable. Today’s social 
structures are not designed as integrated systems and do not take advantage of new digital 
feedback technologies that would allow them to be dynamic and responsive.  
We need a radical rethinking of societies’ systems. Instead of separate systems for each 
function, i.e., water, food, waste, transport, education, energy, etc., we must consider them 
holistically. Instead of thinking about access and distribution systems only, we must also take 
into account complex interactions and reactions so that we can design dynamic, networked 
systems that are self-regulating. In short, to build a sustainable society for the future, we must 
create a nervous system for humanity that maintains the stability of our societies’ systems 
throughout the globe.  
 
The central idea is that we must reinvent societies’ systems within a control framework: sensing 
the situation, then combining these observations with models of demand and dynamic reaction, 
and finally using the resulting predictions to control the system.   Surprisingly, much of the 
sensing and many of the required control elements are already in place. What is missing, 
though, are the dynamic models of demand and reaction along with an architecture that 
guarantees safety, stability and efficiency. 
 
The models required must describe human demand and reactions, since humans are at the 
core of all of these systems. Consequently, the necessary observations are observations of 
individual behavior, which means that there will be an exponential growth in data about human 
behavior.   The importance of data about human behavior is made clear by this quote from 
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Meglena Kuneva, European Consumer Commissioner:  ―Personal data is the new oil of the 
internet and the new currency of the digital world.‖  
One consequence of this growth in behavior sensing data is that the architecture of future 
systems must also guarantee privacy and fair treatment for all potential participants.   As Jon 
Leibowitz, Chairman of the U.S. Federal Trade Commission says, `Privacy must be an integral 
part of any future system.’ 
 
Realizing that using pervasive and mobile sensing to reinvent our society’s infrastructure would 
require `buy in’ from government, citizenry, and companies, I persuaded the World Economic 
Forum to begin a multi-year conversation [1] with the heads of several major IT, wireless, 
infrastructure, and financial firms, as well as the heads of American, EU, and other regulatory 
organizations, and a variety of NGOs. The first publication emerging from this discussion can be 
found at [2]; this current paper describes the background and what I see as result of that 
conversation, along with insights about the path forward given the emerging consensus on a 
`new deal on data’ proposed in [1].  
 
In the following sections, I will describe what is expected to be the future evolution of the 
sensing, modeling, and overall design of these new active systems. The discussion on sensing 
covers not just data acquisition, but also privacy and data ownership, significant issues that 
must be addressed in building these practical systems of the future. The modeling discussion 
will argue that it is important to choose techniques of mathematical modeling whose structure 
closely follows the organization of the actual physical elements of the given system. The system 
design section will argue that we should import ideas from economics to help define the overall 
system performance criteria. I will not spend time discussing final control actions in these future 
systems, because I believe that those will likely depend on very fine-grain details of these future 
systems. 

 
1. Pervasive sensing 

 
Worldwide, there are now almost five billion mobile phone subscribers and every day millions of 
new subscribers get phones. For the first time in history, the majority of humanity is linked and 
has a voice. The most important change, however, will come from the fact that these same 
mobile phones are location-aware sensor platforms and their wireless networks support sensors 
in cars, buses, and homes. As a consequence, our mobile wireless infrastructure can be `reality 
mined’ in order to understand the patterns of human behavior, monitor our environments, and 
plan the development of our society [3].  
 
This `reality mining’ functionality is mostly latent at this point, but already these devices are 
being used to measure population flows into cities and slums, to map the movement of 
populations during emergencies, to identify neighborhoods where social services are 
inadequate, and to manage automobile traffic congestion [2]. The ability of mobile phone 
networks to identify unusual patterns of movement and communication is also beginning to be 
used by public health officials and disaster relief teams to scan outbreaks of diseases like SARS 
and emergencies such as tidal waves. 
 
Like some world-spanning living organism, wireless traffic systems, security sensors, and 
especially mobile telephone networks are combining to become intelligent, reactive systems 
with sensors serving as their eyes and ears. Moreover, the evolution of this nervous system will 
continue at a quickening speed because of the exponential progress in computing and 
communication technologies as well as basic economics. Networks will become faster, devices 



will have more sensors, and techniques for modeling human behavior will become more 
accurate and detailed. 
 
Reality mining of the `digital breadcrumbs’ left behind as we go about our daily lives offers 
potential for creating remarkable, second-by-second models of group dynamics and reactions 
over extended periods of time, providing both dynamic structural and content information. The 
key is to harness these streams of personal data and use them to create and drive dynamic 
models of aggregate human behavior [4]. 
 
Perhaps the simplest example is the analysis of automobile traffic congestion by using the 
global positioning system (GPS) data collected from the mobile telephones carried by the 
automobile drivers. These data provide minute-by-minute updates on traffic flow, allowing for 
more accurate predictions of driving time. Congestion patterns can be predicted in advance, and 
traffic jams detected before they become serious.  
 
Similar to using mobility data to understand traffic within a city, we can also use data from RFID 
name badges, mobile phone Bluetooth data, phone call logs, and email records to better 
understand the ―information traffic‖ within an organization. Analysis of these digital traces has 
already allowed us a new level of insight into the problems of industry and government, 
including building customer relationships, resource management, transportation, and even 
employee health [5].  In our experiments mapping corporation information flows we typically find 
that the pattern of information transfer --- face-to-face, email, etc., independent of the content of 
the information  --- accounts for almost half of the performance variation within a corporation. 
Using these `information maps’ to re-engineer corporate procedures has often generated very 
significant increases in performance [5,6,7,8,9]. 
 
At a larger scale, commercial operations and government services all currently rely on 
demographic and survey data to guide them. Such data can quickly become out of date and, of 
course, good demographic data simply do not exist in many parts of the world. The fact that 
mobile phones have GPS means that we can leap beyond demographics directly to measuring 
behavior. Where do people eat? Work? Hang out?  What routes do they travel?    
 
Analysis of mobility patterns allows discovery of different varieties of behavior patterns within a 
city, and the stratification of the population into subgroups with different types of behaviors.  
Figure 1a shows movement patterns with popular destinations coded by the different subgroups 
that populate these destinations, where the subgroups are defined their behaviors – what types 
of restaurants they visit, what sort of entertainment they like, and so forth. Figure 1b shows that 
the mixing between these different behavior groups is surprisingly small.   
 
Knowledge of the behavior preferences of different subgroups provides a far more accurate 
picture of their preferences and risks than standard demographics.   Such a stratification of the 
population into different `behavior demographics’ typically provides between 5 and 10 times the 
accuracy of traditional demographics at tasks such as predicting risk for diseases of behavior 
(e.g., diabetes), financial risk profile, consumer preferences and political views [6].   The ability 
to stratify people based on their behavior profile  has already shown great potential to improve 
public heath, urban planning, public education, and government policy [2,6] by providing a more 
accurate and in-depth picture of the citizenry .  Even greater accuracy at modeling human 
behavior patterns can be obtained by adding credit card data, healthcare information, and 
similar `digital breadcrumbs.’  In short, we now have the capacity to collect and analyze data 
about people with a breadth and depth that was previously inconceivable.  
 



 
 

a        b  
Figure 1: Reality mining of data from GPS mobile phones.  (a): Movement patterns, measured 
from GPS mobile phones; (b): Segmentation of the population into groups with differing 
behaviors [6]. 
 
 
1.1 Data ownership and privacy 
Perhaps the greatest challenge posed by this new ability to sense the pulse of humanity is 
creating a ―new deal‖ around questions of privacy and data ownership [1]. Advances in analysis 
of network data must be approached in tandem with an understanding how to create value for 
the producers and owners of the data, while at the same time protecting the public good. 
 
What must be avoided is either the retreat into secrecy, so that these data become the 
exclusive domain of private companies and remain inaccessible to the Common Good, or the 
development of a ―big brother‖ model, with government using the data but denying the public the 
ability to investigate or critique its conclusions. Neither scenario will serve the long-term public 
interest in having a transparent and efficient society. 
 
Similarly, the use of anonymous data should be enforced, and analysis at the group level should 
be preferred over that at the individual level. Robust models of collaboration and data sharing 
need to be developed; guarding both the privacy of consumers as well as corporations’ 
legitimate competitive interests are vital here. 
 
The vast majority of this personal data is collected by private organizations -- location patterns, 
financial transactions, public transportation, phone and Internet communications, and so on.  As 
a consequence, companies will have a key role in this new deal for privacy and ownership, and 
so either extensive government regulation or market mechanisms with auditing will be needed in 
order to entice owners to give up the data they hold. The obvious choice is to design market 
mechanisms that have sufficient accountability to guarantee individual and societal safety. 
 
 



1.2 The new deal on data 
The first step toward creating such information markets is to give people some ownership of the 
data that is about them. Just as with financial and commodity markets, the first step toward a 
healthy market is creation of an asset class such as land rights.  This is why the World 
Economic Forum publication is subtitled `Emergence of a New Asset Class.’ [2] 
 
The simplest approach to defining what it means to ―own your own data‖ is to go back to Old 
English Common Law for the three basic tenets of ownership, which are the rights of 
possession, use, and disposal: 
 
1. You have a right to possess your data. Companies should adopt the role of a Swiss bank 
account for your data. You open an account (anonymously, if possible), and you can remove 
your data whenever you’d like. 
 
2. You, the data owner, must have full control over the use of your data. If you’re not happy with 
the way a company uses your data, you can remove it.  Everything must be opt-in, and not only 
clearly explained in plain language, but with regular reminders that you have the option to opt 
out. 
 
3. You have a right to dispose or distribute your data. If you want to destroy it or remove it and 
redeploy it elsewhere, it is your call. 
 
Ownership by individuals needs to be balanced by the legitimate need for corporations and 
governments to use personal data -- credit card numbers, home addresses, etc. --to run their 
day-to-day operations. The ―new deal on data‖ therefore gives individuals the right to own and 
control a copy of the data about them rather than ownership of corporations’ internal data as 
long as that data is required for legitimate operations.   The private ownership of complete 
copies of personal data is sufficient to create a liquid, dynamic new asset class. 
 
1.3 Enforcing the New Deal on Data 
The issue of enforcement is not simply authenticating the identity of an individual, but rather 
validating whole series of ―claims‖ and ―privileges‖ an individual, institution, or device may make 
that give them access and use of valued services and resources. As more and more business, 
financial, civic and governmental services use personal data, the integrity and interoperability of 
a global authentication and ―claims‖ infrastructure will be paramount.   
 
Since there can be no single authority that can micro-manage all transactions, failures, and 
attacks, such a global infrastructure – like the Internet itself -- will have to be highly distributed 
and user-centric to assure rapid innovation, containment and self-correction. The Trust 
Networks that certify the Open Identity Exchange (OIX) protocols are an example of such a 
distributed authority and are accepted not only by major companies but also many governments 
as well. 
 
Similar to the current OIX ecosystem, such a `Trust Network’ will need to continuously monitor, 
flag and contain fraudulent and deceptive behaviors.  This will require not only innovations in 
software to track and audit the behaviors of actors in transaction networks, but innovations in 
policy and contract law so that there can be simple, fair and effective enforcement and 
remedies. The Law Lab at the Harvard Berkman Center [28, 29] has developed the prototype of 
such a trust network and together with my research group, in support of the World Economic 
Forum Rethinking Personal Data Project, we are now testing how these trust networks perform 
`in the wild’ [2]. 



 
As authentication and claims processing becomes fully automated and digital, there is no 
reason that legal and administrative processes should not also become automated and more 
transparent, accountable, and efficient. In short, digital technologies should not only expedite a 
global infrastructure for highly reliable and innovative claims processing, but also eliminate 
much of the uncertainty, cost, and friction of legal and regulatory oversight.  Were this to 
happen, transaction costs would be greatly diminished and new forms of liquidity and innovative 
businesses would arise. Given that verifiable trust reduces transaction risks and builds customer 
loyalty, it will be in the economic interest of those offering future online and mobile services to 
build their brand as verifiable trusted stewards of personal data. 
 
 
2. Models of Society 

 
 
The first part of this new `nervous system’ -- sensing -- seems to be evolving quite well due to 
the economic advantage it offers the world’s citizenry. But what about the second part, that is, 
the dynamic models of demand and reaction? Unfortunately the vast majority of research on the 
human condition has relied on single-shot, self-report data on relationships: a yearly census, 
public polls, focus groups, and the like. As a consequence, the science of modeling human 
dynamics is in its infancy. 
 
Because this science is just developing, no final answer can be given about what specific types 
of mathematical modeling are required. I will therefore describe the approaches that I have seen 
to be the most promising, in the hope that it will inspire others to develop even better modeling 
techniques. 
 
Three key principles that the models should adhere to include: (1) to be fully dynamic, so that 
they can be used in a control system, (2) to have the structure of the model reflect the structure 
of the phenomenon (in most cases, the structure of human groups); and (3) that the model 
parameters should be driven almost entirely by real-world observations. Perhaps the most 
controversial implication of these three principles is that the model should contain both agent 
models derived from observation data along with the influences between the agents, information 
also derived from observation data.    
 
Currently, most models used to model human behavior are either agent models built largely 
from psychological data, or machine learning models (such as SVMs) that do not incorporate 
the networked structure of human society. In my experience, models that capture the structure 
of our human social fabric by incorporating both agent model and influence between the agents 
have consistently performed better at modeling human behavior than either traditional agent 
models or traditional machine learning algorithms. 
 
2.1 Social Influence 
While much progress has been made in constructing models of individual human behavior, 
models of the influence that we exert on each other remain much less developed. For more than 
50 years, social scientists and psychologists have been interested in analyzing and 
understanding who influences whom in a social system, Much of this past social science 
research has focused on smaller systems, such as that within a group discussion process [7]. 
Influence is also particularly interesting in the context of leadership and group dynamics, where 
the influence between one another in these contexts has been recognized as a significant factor 
of group performance [8]. 



 
From the signal processing and modeling point of view, however, the difficult question remains 
as to how to define and model the concept of influence in a formal, mathematical way. Adding to 
the complication is the fact that influence between individuals is often not directly observable, 
and only individual-level behavioral signals are generally available [9,10]. Therefore, the 
challenges are not only to define influence, but also to infer influence from individual 
observations and individual signals. 

 
A line of research that we have pioneered, known as influence modeling, is focused on 
modeling such social influence mathematically. This type of influence model addresses two 
fundamental challenges: 

 
• The influence model mathematically defines ―influence‖ and how influence changes, and the 
―influence‖ learned by the influence model is tightly connected with the sociological meaning of 
influence. 

 
• The influence model enables researchers to infer interactions and influence dynamics by using 
only time series signals from individual observations. 
 
The influence model was introduced in [13, 16], and was developed around the idea of modeling 
influence using conditional probability, using an inference scheme based on optimization. It is 
described in more detail in the Appendix. Other related models exist, and some have similar 
properties [11,12,15,16,19, 20, 21,22,23,24,25,26,27]. The core concept here is that the 
structure of the model matches the structure of the social phenomena and that the model and its 
dynamics are driven by real-world observational data. 

 
2.2 Social Influence in Human Society 

 
The key question to ask for any model of influence is whether the derived influence parameters 
(describe by an influence matrix R in this case) accurately represent the concept of influence in 
human interactions. In other words, does the concept of influence, as defined in this article, 
have practical and sociological meanings? The first example of using this model was with 
conversation data from the wearable sociometric badges on 23 individuals, where it was 
discovered that the influence strength between individuals learned by influence model correlates 
extremely well with individual centrality in their social networks (with correlation r = 0.92, p < 
0.0004)[15].  
 
Our influence model has since been applied to many different human interaction problems. For 
instance, researchers have used the influence model in understanding the functional role 
(follower, orienteer, giver, seeker, etc.) of each individual in a mission survival group discussion 
dataset [17]. By using the reality mining [10] cellphone sensor data from 80 MIT members as 
observations, and constraining the latent space of each individual to be binary ―work‖ and 
―home‖, researchers found that the influence matrix gleaned from this data matches well with 
the organizational relationship between individuals [13]. This is intuitive as students’ schedules 
are likely to be influenced by close colleagues’ working schedules.  
 
Related works [14] often use an influence model as a modeling tool for the evolution of social 
systems. The influence model has also been extended to non-stationary situations in which the 
influence matrix itself changes [18]. Combined, these experiments strongly suggest that the 
influence matrix, defined as the conditional dependence on states of other entities in the model, 
is an important measure for the influence of the individuals in real social interactions. 



 

 

3. Overall System Design 
 
Section 1 argued that the required observation systems are developing nicely and that 
regulatory and industrial leaders have made at least a first pass at addressing the problem of 
data availability and minimizing the risk of harm to individuals. Section 2 argued that progress is 
being made in developing social system modeling techniques that are fully dynamic and stable 
and whose parameters can be efficiently set from available observations. I now turn to the 
problem of overall system design. Unfortunately, we don’t yet understand fully how to design 
dynamic social systems so that they can accomplish all of the lofty goals we now set before 
them.  At its core, this design problem requires understanding how the actions of many 
individuals can be reliably combined to produce the desired outcomes.    
 
3.1 A Template for the Design of Social Network Systems 
Fortunately, the field of economics provides a useful template for answering this design 
question: social efficiency, which is also known as the ―invisible hand‖ described by Adam Smith 
that optimally distributes resources throughout society. In socially efficient systems, when I 
make a profit for myself, I also make a profit for the entire society. For an ideally efficient 
society, the coupling between individual and societal benefit is perfect. Social efficiency also 
implies the reverse condition: what is bad for the individual is likewise bad for society. In 
situations where most people are well-off, the fitness of a society can be measured by the 
conditions of its poorest and most vulnerable members. Given the well-known shortcomings of 
human nature, this design requirement that social network systems be socially efficient is very 
desirable. 
 
Applying the principle of social efficiency to social network systems means that the exchange of 
information between individuals, or between the system and the individual, must not only 
reliably provide value to the individual but also efficiently add value to the whole system. One 
way to accomplish this is through an open market and in recent centuries this solution has 
dominated our thinking. The result of our reliance on open market approaches has been 
systems with ever greater transparency but also ever greater concerns about the `end of 
privacy.’   
 
One significant problem with the open market solution for social efficiency is that we are not all 
created equal. Some `people’ are actually corporations or governments with enormous analytic 
capabilities and in open markets they will consistently outwit individuals less richly endowed with 
computational resources.This inequality in computational resources is quickly becoming a major 
source of inequality in society and is also a major source of cybercrime and worries about 
cyberwarfare. 
 
It is fortunate that an approach that relies on strong control of personal information with limited 
transparency -- such as the proposed New Deal on Data -- can also produce a socially efficient 
system [30]. If our ability to view information within the social network is limited to only those we 
deal with directly, and we have the right to share information only in fair exchanges, then the 
scope for collusion and deception is sharply limited and a stable, fair information economy 
emerges. This line of reasoning provides significant theoretical backing for the `new deal on 
data’ as a method to supersede the current failing generation of privacy mechanisms [1,2] and 
offers a way for society to utilize information about where people are, what they do, as well as 
their preferences and characteristics, while still maintaining strictly controlled individual risk and 
individual control of personal data [2,30]. 



 
One can grasp the intuition behind this surprising result by considering the typical urban 
experience.  As you go through your daily life you have familiar, routine interactions with many 
people, although most likely you don’t know their friends, the other people they deal with, and so 
forth:  they are `familiar strangers.’ The fact that you know about them but not their network 
means that collusion against them becomes much more difficult.  In a similar way, social 
network systems can be designed to be optimized and fair without exposing their members to 
increased risk.  
 
The ``open market‖ and ``strong personal control’’ models are but two approaches to social 
efficiency and there are almost certainly other ways to achieve social efficiency, including 
blends of these two models. Consequently, it is important to discover these new paths to social 
efficiency and use them to engineer social network systems. In the meantime, we need to 
understand how to engineer systems that capitalize on the mathematical results that we already 
have in hand.  
 
 
3.2 Incentives 
While significant progress is being made in the areas of building trust networks to regulate 
social network systems and how to optimize these sorts of complex human-machine systems  
[2],  a missing part of the puzzle is how to get the humans in these systems to participate in the 
plan. Designing an` optimal’ system is useless unless it fits our human natures, because 
otherwise we run the risk that people will either ignore or misuse it. To integrate humans into a 
system requires new predictive theories of human decision making [3] along with a more 
powerful theory of incentive mechanism design. 
 
Current financial mechanism design theory is quite useful for devising successful financial 
incentives. For example, optimizing on-line auctions and the like have generated billions of 
dollars for corporations such as Google. Current theory, however, is limited to financial 
incentives, whereas humans respond as well or better to social incentives. Moreover, incentives 
in markets can operate very differently than incentives in networks, largely because the 
connectivity of social network systems limits visibility and opportunity. We need a theory of 
`mechanism design in networks’ that includes social as well as financial capital [2]. 
 
An example of one such mechanism is the one we used to win the 40th anniversary of the 
Internet Grand Challenge (also known as the Red Balloon challenge).The goal of the challenge 
was to discover the location of ten red balloons placed somewhere in the continental United 
States, in order to win a $40,000 prize [31, 32]. Over 4,000 teams competed and every team 
except ours used incentive mechanisms tailored to encourage individuals to report balloons. 
Instead, we created an incentive mechanism that both encouraged reporting balloons, but even 
more importantly, encouraged people to leverage their social network to recruit additional 
participants. By designing a mechanism to leverage the social network rather than individuals, 
we were able to recruit a larger and more motivated group of people searching for balloons. 
 
4. Conclusions 
 
Revolutionary new measurement tools provided by mobile telephones and other digital 
infrastructures are providing us with a God’s eye view of ourselves. For the first time, we can 
precisely map the behavior of large numbers of people as they go about their daily lives.  For 
society, the hope is that we can use this new in-depth understanding of individual behavior to 
increase the efficiency and responsiveness of industries and governments. For individuals, the 



attraction is the possibility of a world where everything is arranged for your convenience—your 
health checkup is magically scheduled just as you begin to get sick, the bus comes just as you 
get to the bus stop, and there is never a line of waiting people at city hall. 
 
As these new abilities become refined by the use of more sophisticated statistical models and 
sensor capabilities, we could well see the creation of a quantitative, predictive science of human 
organizations and human society. At the same time, these new tools have the potential to make 
George Orwell’s vision of an all-controlling state into a reality. As a consequence, we need to 
think carefully about the growth and increasingly broad usage of personal data to drive societies 
systems,  and particularly about the safety, stability, and fairness of their design.    
 
Towards this end, I have proposed the New Deal on Data that ensures accountability and data 
ownership, and I have successfully advocated its adoption to regulatory, industrial, and NGO 
leaders. Current legal statutes are lagging far behind our ability to collect and process data 
about people; clearly our notions of privacy and ownership of data need to evolve in order to 
adapt to these new capabilities. Perhaps the first step is to give people ownership of their data, 
creating what economists know as a ―fair market‖ for the information that will drive this new 
social nervous system 
 
I have also proposed the criterion of social efficiency both as a design goal and as a metric for 
the design of social network systems. Information is increasingly the wealth of our civilization 
and it is time to draw on our rich legacy of thinking about the distribution and regulation of 
financial wealth in order to be able to build social networks systems that live up to our 
aspirations.  
 
If we can successfully address these challenges, then we will see current systems evolve into 
an effective nervous system for our society, one that could repay our investment many-fold in 
terms of better civic services, a greener way of life, and a safer, more healthy population. 
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Appendix A: Latent State Influence Modeling 

 

This Appendix presents the structure, and performance of the Influence Model.   MATLAB code 

for estimating parameters and example problems can be found at  

http://vismod.media.mit.edu/vismod/demos/influence-model/index.html 

 

A.1 Entities in a Social System 

The influence model begins with a system of C entities. Each entity is an `independent actor’, 

which can be a person in the case of a group discussion, or a geographical district in the case of 

modeling flu epidemics. We then assume that each entity c is associated with a finite set of 

possible states 1, . . . , S. At different time t, each entity c is in one of the states, denoted by ht
(c)  

Є (1, . . . , S). It is not necessary that each entity is associated with the same set of possible 

state.  However, in order to simplify our description, for discussion we can assume that each 

entity’s latent state space is the same without loss of generality. The state of each entity is not 

directly observable. However, as in the Hidden Markov Model (HMM), each entity emits a signal 

Ot
(c)  at time stamp t based on the current latent state ht

(c), following a conditional emission 

probability Prob(Ot
(c)  |ht 

(c) ).  

 

Defining influence as the state dependence for an entity on states of other nodes is an idea that 

has been extensively explored by the statistical physics community. Castellano et al [22], for 

instance, refer to these statistical physics models as ―opinion dynamics.‖ 

Similarly, the Bayesian network is a tool often used in understanding and processing social 

interaction time series data. Earlier projects have used coupled HMM [12] and more recent 

projects have used dynamic system trees [15] and interacting Markov chains [19]. The key 

contribution and difference of the influence model is that we use the influence matrix R to 

connect the social network to state dependence in a very parsimonious manner.  

 

A.2 Modeling Influence between Entities 

The social system we want to model is composed of many entities interacting and influencing 

each other. In the influence model, ―influence‖ is defined as the conditional dependence 

between each entity’s current state ht
 (c) at time t and the previous states of all entities ht−1 

(1), . . . 

, ht−1 
(C)  at time t − 1. Therefore, intuitively, ht 

(c) is influenced by all other entities. We now 

discuss the conditional probability:  

 

http://vismod.media.mit.edu/vismod/demos/influence-model/index.html


Prob(ht
(c’)| ht−1 

(1), . . . , ht−1 
(C) )     (1) 

 

Once we have Prob(ht
(c’)| ht−1 

(1), . . . , ht−1 
(C) ), we naturally achieve a generative stochastic 

process. 

 

As in the coupled Markov Model [12], we can take a general combinatorial approach and 

convert Eq. 1 into an equivalent Hidden Markov Model (HMM), in which each different latent 

state combination (ht−1 
(1), . . . , ht−1 

(C)) is represented by a unique state. Therefore, for a system 

with C interacting entities, the equivalent HMM will have a latent state space of size SC, 

exponential to the number of entities in the system, which is unacceptable in real applications. 

 

The influence model approach, in contrast, uses a simpler mixture approach with dramatically 

fewer parameters. Entities 1, …. C influence the state of c` in the following way: 

 

Prob(ht
(c’)| ht−1 

(1), . . . , ht−1 
(C) ) = ∑c=(1,…C)  Rc’,c  X  Prob(ht

(c’)| ht−1 
(1) )       (2) 

 

Where R  is a C X C row stochastic matrix that models the tie strength between entities.  

Prob(ht
(c’)| ht−1 

(1) ) is modeled using an S X S row stochastic matrix Mc,c’  which describes the 

conditional probability between states of different entities, and is known as the transition matrix 

in the HMM literature. Generally, for each entity c there are C different transition matricies in the 

influence model to capture the influence dynamics between c and c’= 1,…C. However, this can 

be simplified by replacing the C different matricies with only two S X S matrices Ec and Fc: Ec = 

Mc,c captures the self-transitions, and because the influence of entity c over other entities is 

similarly fixed, the inter-entity state transitions Mc,c’ = Fc for all c’ ≠ c. 

 

Eq. 2 can be viewed as follows: all entities’ states at time t − 1 will influence the state of entity c’ 

at time t. However, the strength of influence is different for different entities. The strength of c 

over c’ is captured by Rc’,c. The state distribution for entity c’ at time t is a combination of 

influence from all other entities weighted by their strength over c’. Because R captures influence 

strength between any two entities, we refer to R as Influence Matrix. 

 

The advantages of this model are that: 

 



1. It has very few parameters. The number of parameters in our model grows 

quadratically with respect to number of entities C and the latent space size S. This 

largely relieves the requirements for large training sets and reduces the chances of 

model overfitting. As a result, the influence model is scalable to larger social systems, 

and is resistant to overfitting when training data is limited [11]. 

 

2. The tie strength between entities using a C × C matrix R. R can be naturally treated as 

the adjacency matrix for a directed weighted graph in graph theory. The influence 

strength between two nodes learned by our model can be then treated as tie weights in 

social networks.This key contribution connects the conditional probabilistic dependence 

to a weighted network topology. In fact, in previous works, the most common usage for 

the influence model is to use R to understand social structure [13,14,17,18]. 

 

 


